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Abstract: Currently, diagnosis of voice disorders is often made when patients visit the clinic, by which time speakers already
experience vocal difficulties. The goal of this study was to develop a voice inversion system that predicts how speakers modu-
late vocal physiology from the produced voice, toward early detection of unhealthy vocal behavior. Two neural networks, a
Bayesian neural network and a deep ensemble of neural networks, were developed that predict changes in vocal physiological
parameters and their confidence intervals. Comparison to human data showed that both networks were able to predict mean-
ingful differences in vocal behavior across subjects, demonstrating their potential toward ambulatory monitoring of vocal
behavior at the physiological level. VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

[Editor: Charles C. Church] https://doi.org/10.1121/10.0039842

Received: 30 September 2025 Accepted: 28 October 2025 Published Online: 11 November 2025

1. Introduction

Voice disorders have been estimated to affect approximately 30% of the adult population in the United States at some
point in their lives, with about 7% of individuals affected at any given point in time.1,2 Due to limited access to the larynx,
diagnosis is often made when patients visit the clinic, at which time the voice disorder often has already progressed to a
point that speakers experience vocal difficulties or noticeable voice changes have occurred. Early diagnosis outside the
clinic is difficult, as it is not easy to see into the throat without specialized equipment. However, unhealthy vocal behavior
(e.g., tendency to talk loud or tightly squeeze the larynx), if not identified and intervened in a timely manner, may lead to
repeated vocal fold injury and more permanent voice disorders.

Currently, there are no validated voice monitoring systems that allow speakers, particularly voice professionals
such as teachers and singers, to monitor their vocal health and identify unhealthy, abusive vocal behavior outside the clinic.
While there have been much research efforts toward ambulatory monitoring of the voice outside the clinic,3–5 they often
focus on monitoring the produced voice outcomes (e.g., pitch, loudness, and voice quality) rather than how speakers mod-
ulate their vocal physiology as they speak (e.g., how much lung pressure is used and how strongly they adduct or stiffen
the vocal folds). While changes in the produced voice outcomes provide important insights into potential pathophysiology,
inferring the underlying changes in vocal physiology from the produced voice outcomes (the inverse problem) is not
always straightforward. This makes it difficult to identify unhealthy, abusive vocal behavior from the produced voice alone,
particularly in an ambulatory setting outside the clinic when endoscopy is often unavailable.

A main challenge in solving the inverse problem is the lack of experimental data on how speakers modulate
vocal fold geometry and mechanical properties during phonation, due to limited access to the larynx, which makes it diffi-
cult to relate such physiological parameters to the produced voice outcomes. As a result, previous studies often have to
rely on a computational voice production model to establish the relationship between vocal physiology and the produced
voice outcomes, which is then used to solve the inverse problem (e.g., Refs. 6–13). More recently, a simulation-based
machine learning approach was proposed8–13 that uses data generated from computational voice simulations to train neural
networks to map the produced voice outcomes to the underlying physiological parameters. When data are generated using
a three-dimensional continuum vocal fold model, such neural networks can estimate realistic, directly measurable, and clin-
ically relevant physiological parameters, including vocal fold geometry, stiffness, glottal gap, and subglottal pressure.9 In
our previous studies, validation in excised larynx experiment9 and in a single-subject study10 showed that the neural net-
work was able to predict subglottal pressure with reasonable accuracy. Comparison to magnetic resonance imaging showed
that the network also estimated vocal fold geometry with reasonable accuracy.9 A similar simulation-based machine
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learning approach using lumped-element vocal fold models8,11–13 was also reported to show similar performance in pre-
dicting the subglottal pressure.

A limitation of these recent studies is that the neural networks provide only point estimate predictions without
any information on the uncertainty of the predictions. Uncertainty information is essential to the interpretation of the pre-
dictions and the clinical decision-making process. One way to obtain such information is to train neural networks in the
Bayesian framework (e.g., Refs. 14 and 15), in which the weights and biases of the neural networks are considered as distri-
butions rather than a single value, as recently implemented for voice inversion in Ref. 13. These distributions are then esti-
mated from the training data. Alternatively, a distribution of each weight and bias can be estimated from an ensemble of
neural networks that are initialized randomly and trained independently.16,17

In this study, we report our recent effort in developing neural networks for voice production inversion that not
only predict vocal physiology but also provide a confidence interval (CI) of the predictions. Two approaches were consid-
ered, including a Bayesian neural network (BNN) and an ensemble of neural networks. The neural networks were trained
using the same simulation data generated from the three-dimensional model in Refs. 9 and 10, which allow estimation of
clinically relevant parameters. The potential of the neural networks toward ambulatory monitoring of vocal function and
health was then evaluated by applying to data collected from three human subjects. We particularly focused on the neural
networks’ capabilities in predicting subglottal pressure and vocal fold adduction—two important factors contributing to
risk of vocal fold injury and vocal health.18,19

2. Method

2.1 Training data

Data generated from voice production simulations using a three-dimensional computational model of voice produc-
tion9,20 were used for neural network training in this study. The simulations involved parametric variations in the sub-
glottal pressure and vocal fold geometry and stiffness, a total of nine control parameters (Table 1, output parameters),
as described in Ref. 9. The ranges of control parameter variations were determined based on values reported in the liter-
ature, and encompass typical conditions of voice production in males, females, and children, as well as voices of varying
qualities. A total of 2 21 400 simulations were performed. For each condition, voice features were extracted from the pro-
duced voice outcomes. These include the fundamental frequency (F0), sound pressure level (SPL), cepstral peak promi-
nence (CPP), harmonic-to-noise ratio (HNR), subharmonic-to-harmonic ratio (SHR), the differences in amplitude
between the first harmonic and the second harmonic (H1-H2), the fourth harmonic (H1-H4), the harmonic nearest
2 kHz (H1-H2k), and the harmonic nearest 5 kHz (H1-H5k) in the spectrum of the time derivative of the glottal flow
waveform, mean (Qmean) and peak-to-peak amplitude (Qamp) of the glottal flow waveform, closed quotient (CQ) of
the glottal flow waveform, maximum flow declination rate (MFDR), and maximum flow acceleration rate (MFAR).

In this study, neural networks were trained to estimate the nine physiological control parameters (Table 1, neural
network output) from the 14 voice features (Table 1, input to the neural network). All data were z-scored before training.
Similar to Ref. 9, this study intentionally did not include any features characterizing vocal fold vibration so that application
of the trained networks does not require specialized equipment (e.g., endoscopy) that may not be readily available outside
the clinic.

2.2 Neural network training

Each neural network included an input layer of voice features, four hidden layers with 200 neurons each, and an output
layer. This configuration was selected based on previous studies using different number of layers and neurons.9,10 Two
approaches were used to train a neural network that provides both predictions and their uncertainty intervals: deep ensem-
bles and BNN. The neural network training was implemented in MATLAB Deep Learning Toolbox (MathWorks, Natick,
MA, version 2019 b).

In the first approach, an ensemble of 100 neural networks were trained independently using the simulation data,
similar to the procedure described in Ref. 16. For each neural network, the weights and biases were randomly initialized at
the beginning of the training, and the training data were also randomly divided into sets of training (70%), validation
(15%), and testing (15%). Each neural network was trained to minimize the mean squared error with regularization
between the truth and network prediction, using the scaled conjugate gradient method. For a given input vector of voice

Table 1. Input and output of the neural networks.

Input (voice features) Output (physiological parameters)

F0, SPL, CPP, HNR, SHR, H1-H2,
H1-H4, H1-H2k, H1-H5k, Qmean,
Qamp, CQ, MFDR, MFAR

Vocal fold (VF) length (front-back; mm), VF vertical thickness (mm), VF body-layer
depth (left-right; mm), VF cover-layer depth (left-right; mm), VF body-layer longitu-
dinal stiffness (kPa), VF cover-layer longitudinal stiffness (kPa), VF transverse stiffness

(kPa), glottal angle (VF approximation; degree), subglottal pressure (Pa)

ARTICLE asa.scitation.org/journal/jel

JASA Express Lett. 5 (11), 118601 (2025) 5, 118601-2

https://scitation.org/journal/jel


features, these 100 neural networks provide a distribution of predictions, from which the mean value and a 95% CI are
calculated.

Unlike the ensemble of neural networks with a single deterministic value for each of the weights and biases,
BNNs model each weight and bias as a distribution.14,15 In this study, a BNN was trained with the posterior distributions
of the weights and biases approximated with multivariate Gaussian distributions. The mean and standard deviation of these
distributions were estimated by minimizing the evidence lower bound using the ADAM optimizer. For prediction, the pos-
terior distributions were sampled 100 times for each input. This results in 100 estimates of the physiological control
parameters, from which the mean value and a 95% CI are calculated.

2.3 Performance evaluation using human data

The performance of the neural networks was evaluated against human data. Acoustic and aerodynamic data were collected
in human subjects producing utterances of five repetitions of the syllable /pa/ at different loudness levels. This speech task
was chosen because the intraoral pressure during the /p/ is often used as an indirect estimate of the subglottal pressure
during the following vowel /a/, which allows us to quantitatively evaluate the network performance in predicting the sub-
glottal pressure. In addition, consecutive consonant–vowel sequences as the /pa/ require alternating vocal fold adduction
and abduction, which allows qualitative evaluation of the prediction accuracy of the glottal angle. The results below are
based on data from three subjects, including two males (ages 45 and 15 years) and one female (age 60 years).

The produced speech sound was measured using a 1
2 in. B&K microphone. The oral volume flow rate was mea-

sured using a pneumotachograph attached to a circumferentially vented facemask placed against the speaker’s face. The
intraoral air pressure behind the lips was measured using a pressure transducer connected to a catheter, which was passed
through a fitting in the facemask and was held between the lips into the oral cavity. Speakers were instructed to produce
the utterance at varying loudness levels, ranging from soft, comfortable, to loud, without prescribed pitch or loudness
levels.

From the recorded sound pressure data, SPL at 30 cm from the lips was calculated, and F0, CPP, HNR, SHR,
and SPL were extracted using the software VOICESAUCE.21 Because the neural network was trained using simulation data
produced without a vocal tract, the measured SPL was subtracted by 15 dB to correct for the effect of vocal tract resonance,
similar to Ref. 9. This correction factor was determined based on SPL differences between conditions with an /A/ vocal
tract and without a vocal tract.9

Since the glottal flow is almost impossible to measure in humans, the oral volume flow rate was inverse filtered
to obtain the glottal flow waveform using the INVF software,22 from which the glottal flow-related measures (Qmean,
Qamp, CQ, MFDR, and MADR) and spectral shape measures (H1-H2, H1-H4, H1-H2k, H1-H5k) were extracted.

The peak intraoral pressure during the plosives was identified for each /p/ segment. Linear interpolation between
the peak intraoral pressures of two consecutive /p/s was used to approximate the subglottal pressure during the vowel /a/
in between the two /p/’s, which was used as the ground truth subglottal pressure in this study to evaluate the network per-
formance in predicting the subglottal pressure.

For the subglottal pressure, for which experimental data were available for comparison, the performance of the
neural networks was evaluated by the mean absolute errors (MAE) and the mean absolute percentage errors (MAPE)
between the prediction and the experimentally measured subglottal pressure. The performance of the CI was evaluated by
the prediction interval coverage (PIC) or the percentage of times the experimentally measured subglottal pressure falls
within the predicted 95% CI. For the glottal angle, for which no experimental data were available, the prediction perfor-
mance was only qualitatively evaluated against expected vocal fold adduction/abduction behavior during plosive-vowel
transitions.

3. Results

3.1 Comparison between neural network estimates and experiment

Figure 1 compares the subglottal pressure estimated from the two approaches [deep ensemble (DE) of neural networks and
the BNN] and those measured experimentally, for data from all three subjects. In general, the estimates from both
approaches followed the experimental values. The neural networks tended to slightly overestimate the subglottal pressure,
with a linear regression slope of 0.915 and an R2 value of 0.729 for the DE and a linear regression slop of 1.123 and an R2

value of 0.712 for the BNN. For the DE, the MAE was 212 Pa (Table 2), which is slightly better than previous studies
involving human subjects10,11 but larger than that in previous studies using excised larynges.8,9,12 The MAPE was 22.4%,
comparable to other studies8,10,11 but larger than Ref. 12.

The predictions from the BNN were qualitatively similar, but slightly underperformed when compared with the
DE of neural networks (Table 2). In general, the BNN had a slightly larger prediction error for the subglottal pressure. The
linear regression had a slightly lower R1 value of 0.712. The MAE was 264 Pa, and the MAPE was 24.4%, both of which
are slightly larger than those for the DE (Table 2).

Figure 2 shows an example of the estimated subglottal pressure and glottal angle over the duration of the utter-
ance /papapapapa/ for Male 2. In the figure, the top panel [Fig. 2(a)] shows the experimentally measured intraoral pressure
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(blue) and oral airflow (red). Figure 2(b) shows the DE-estimated subglottal pressure (red) and the 95% CI (yellow). Also,
shown in Fig. 2(b) in blue is the intraoral pressure, the linear interpolation of which was used as an indirect measure of
the subglottal pressure (ground truth) over the duration of the vowels. Comparison between the neural network estimates
and the experimental measurement shows that the estimated subglottal pressure generally followed the trend of the experi-
mentally measured subglottal pressure. Except for a few data points [mostly around the transition from /p/ to /a/; not
shown in Fig. 2(b)], the experimental values were within the 95% CI of the neural network predictions, with a 99.6% PIC.
The mean confident interval (0.528 kPa for all subjects) was narrower than that reported in Ref. 13, which was about
0.88 kPa and higher for human data. While a high prediction interval of coverage suggests reliability and is desirable, it
also means that the calculation of the CI may be improved to provide a narrower CI.

Figure 2(c) shows the glottal angle (red) estimated by the DE and its CI (yellow). While experimental measure-
ment of the glottal angle was not available, the estimated glottal angle shows a pattern of alternating adduction (decreasing
glottal angle) when the /p/ transitions to /a/ and abduction (increasing glottal angle) when the /a/ transitions to /p/, as
would be expected. The general trend of the glottal angle is also consistent with the measured oral airflow waveform. For
example, the peak-to-peak amplitude of the oral flow waveform is the largest in the second /pa/ and decreases toward the
third and fourth /pa/ before increasing again toward the end of the utterance. This is consistent with the general trend of

Fig. 1. Deep ensemble (DE) and Bayesian neural network (BNN) estimated subglottal pressure (Ps) as a function of experimental measure-
ment. The solid line is a line through the origin with a slope of 1.

Table 2. Point estimate accuracy and confidence interval (CI) for the subglottal pressure and glottal angle for the three subjects (M1, M2, and
F1). The CI values include both the mean and standard deviation of the CI across the utterances. MAE, mean absolute error; MAPE, mean
absolute percentage error; PIC, prediction interval coverage. MAE, MAPE, and PIC are not available for the glottal angle due to the lack of
experimental data.

Deep ensembles Bayesian neural network

Subglottal
pressure (kPa)

MAE 0.212 0.264
MAPE 22.4% 24.4%
PIC 99.6% 99.6%

CI all subjects 0.5286 0.125 0.7436 0.053
CI (M1) 0.5186 0.089 0.7576 0.056
CI (M2) 0.6006 0.161 0.7576 0.046
CI (F1) 0.4796 0.071 0.7266 0.051

Glottal
angle (�)

CI all subjects 1.5926 0.352 1.5816 0.126
CI (M1) 1.6086 0.305 1.5996 0.122
CI (M2) 1.5936 0.409 1.5596 0.122
CI (F1) 1.5856 0.327 1.5906 0.129
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the minimum glottal angle as predicted by the neural networks. Also, the first /pa/ transition [around 0.15 s in Fig. 2(a)]
exhibits a slow phonation onset and high airflow, indicating a gradual and weak adduction. This is consistent with the rela-
tively large glottal angle that decreases slowly during the first /pa/ transition in Fig. 2(c). In contrast, the decrease in the
glottal angle is much faster in later /pa/s, which results in almost immediate onset of oral airflow oscillation.

The estimations from the BNN are shown in Fig. 2(d) (subglottal pressure) and Fig. 2(e) (glottal angle). The esti-
mated subglottal pressure also followed the trend of the experiment, although the differences between the estimated sub-
glottal pressure and experimental measurement were slightly larger than those from the DE of neural networks [compare
Figs. 2(b) and 2(d)], as also shown in Table 2. The 95% CI predicted by the BNN, however, was much larger than that
from the DE of neural networks (Table 2). For example, for Male 2, the 95% confident interval on average was 0.757 kPa
for the BNN, compared with 0.6 kPa for the DE of neural network.

For the predicted glottal angle [Figs. 2(c) and 2(e)], the CI was comparable between the two approaches.
However, the glottal angle predicted by the BNN [Fig. 2(e)] was generally higher than those predicted by the DE in
Fig. 2(c). The BNN also failed to predict the gradual vocal fold adduction at the beginning of the first /pa/ transition
[around 0.15 s in Fig. 2(e)], during which the predicted glottal angle stayed more or less the same, whereas a gradual
vocal fold adduction was predicted by the DE in Fig. 2(c). While experimental data were not available to quantitatively
evaluate the prediction accuracy of the glottal angle, these observations suggest a higher error in the prediction of the
glottal angle by the BNN.

3.2 Ability to predict meaningful differences across subjects

Figure 3 shows the DE-estimated subglottal pressure, glottal angle, vocal fold vertical thickness, and vocal fold length as a
function of the radiated SPL for all three subjects, each coded by a different color. In general, when increasing vocal inten-
sity, all three subjects increased the subglottal pressure and decreased the glottal angle (i.e., increased vocal fold adduction).
However, the degree of change was speaker specific. For example, subject Male 2 (red in Fig. 3) tended to approximate his
vocal folds more tightly than the other subjects (smaller glottal angle; upper right panel in Fig. 3) and adopted a thick
vocal fold configuration (lower left in Fig. 3). This combination of thick vocal folds and tight approximation is known to
be associated with high risk of vocal fold injury.19 The neural networks were also able to predict meaningful sex-related
differences between males and females. Figure 3 shows that the female subject (green) tended to have the thinnest and
shortest vocal folds, as would be expected. Although not shown here, similar observations can be made from predictions
from the BNN, despite the wider CIs and potentially higher prediction errors.

Fig. 2. (a) The experimentally measured intraoral pressure (blue) and oral airflow (red), (b) the deep ensemble (DE) estimated subglottal pres-
sure (red) and the 95% CI (yellow) compared with the intraoral pressure, the linear interpolation (blue) of which was used as the ground truth
subglottal pressure, (c) the deep ensemble (DE) estimated glottal angle (red) and the 95% CI (yellow), (d) the Bayesian neural network (BNN)
estimated subglottal pressure (red) and the 95% CI (yellow), (e) the BNN estimated glottal angle (red) and the 95% CI (yellow).
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4. Conclusion

The goal of this study was to evaluate the feasibility of two approaches for voice inversion with uncertainty quantification
toward monitoring vocal behavior at the physiological level in human subjects. Both the DE and the BNN were able to
predict the subglottal pressure with reasonable accuracy, with prediction errors comparable to previous studies.8–13

Comparison with experiment shows that the experimental truth was within the calculated CIs, with the predicted CIs nar-
rower than that in a previous study13 and with a 99.6% PIC. Both approaches were also able to qualitatively predict the
alternating vocal fold adduction/abduction behavior during consonant-vowel transitions. When applied to data from
the three human subjects, both approaches were able to identify meaningful differences across subjects in how they modu-
lated the subglottal pressure and vocal fold adduction, two important parameters contributing to vocal health, as well as
sex-related differences in vocal fold length and thickness. This indicates that this simulation-based machine learning
approach has the potential toward clinical applications such as early detection of unhealthy vocal behavior and ambulatory
monitoring of vocal behavior both inside and outside the clinic.

In this study, the DE slightly outperformed the BNN, with the DE having smaller MAE and narrower CIs.
Similar observation (deep ensembles outperforming BNNs) was reported in the literature [e.g., Refs. 15 and 17]. It is noted
that the goal of this study was not to compare these two methods. No effort was made in this study to optimize the config-
uration of the BNN. It is very likely that the performance of the BNN can be improved by better approximating the poste-
rior distributions, which is worth pursuing in future studies.

The CI for the subglottal pressure is still relatively large (around 500 Pa for the DE). The high PIC, while desir-
able, may also indicate inherent variability in the predictions, the sources of which need to be investigated to further
narrow the CIs. Many reasons might contribute to the relatively large CIs. For example, the data used to train the neural
networks were from computational simulations with each of the model control parameters varying only in a small number
of fixed levels (mostly less than four levels except for the subglottal pressure). Thus, the data represent a uniform and
coarse sampling of the model parameter space, which may not be ideal for training the neural networks, considering the
highly nonlinear nature of the physics of voice production.23 In addition, the training data were generated from simula-
tions without a vocal tract, thus neglecting source–filter interaction, and inverse filtering was used to extract voice source
information from the human data. While source–filter interaction is expected to be weak in the speech range, it may
impact the glottal aerodynamic measures24,25 and introduce errors in voice source measures,26,27 thus negatively impacting
the performance of voice production inversion. Ideally, this issue can be avoided by using simulation data obtained with a
vocal tract. However, this will significantly increase the number of model controls and the number of simulations beyond
our limited computing resources. These issues will be addressed in future studies.

Only three subjects were included in this study and quantitative validation was limited to the subglottal pressure
only. Toward clinical applications, future studies should focus on validation in a large number of subjects performing

Fig. 3. DE estimates of physiological parameters as a function of SPL for all three subjects M1 (blue), M2 (red), and F1 (green).
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diverse speech tasks, and validation of other physiological parameters against experimental data, including those from
electroglottography or high-speed vocal fold imaging.
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