
Estimating subglottal pressure and vocal fold adduction
from the produced voice in a single-subject study (L)

Zhaoyan Zhanga)

Department of Head and Neck Surgery, University of California, Los Angeles, 31-24 Rehab Center, 1000 Veteran Avenue,
Los Angeles, California 90095-1794, USA

ABSTRACT:
We previously reported a simulation-based neural network for estimating vocal fold properties and subglottal pres-

sure from the produced voice. This study aims to validate this neural network in a single–human subject study. The

results showed reasonable accuracy of the neural network in estimating the subglottal pressure in this particular

human subject. The neural network was also able to qualitatively differentiate soft and loud speech conditions

regarding differences in the subglottal pressure and degree of vocal fold adduction. This simulation-based neural net-

work has potential applications in identifying unhealthy vocal behavior and monitoring progress of voice therapy or

vocal training. VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0009616
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I. INTRODUCTION

This study concerns the inverse problem in voice pro-

duction, i.e., estimating vocal fold properties (geometry,

stiffness, and position) and subglottal pressure from the pro-

duced voice outcome. Solving the voice production inver-

sion problem has many important applications. In the clinic,

such a voice production inversion system would allow clini-

cians to directly evaluate changes in vocal fold properties

due to pathology or misuse of vocal mechanisms (e.g., vocal

hyperfunction), thus improving diagnosis of voice disorders.

It would also allow the clinician or the speaker to monitor

progress of voice therapy or vocal training, and possibly the

emotional state of the speaker.

In our previous studies (Zhang, 2020, 2021), we

reported a simulation-based neural network for voice pro-

duction inversion. Using voice features extracted from the

produced voice as inputs, the neural network maps these

voice features to the underlying vocal fold properties and

subglottal pressures that produce the corresponding voice.

The mapping was trained using data from parametric simu-

lations using a three-dimensional vocal fold model, which

establish the cause-effect relationship between vocal fold

properties and the produced voice features. The use of a

three-dimensional continuum vocal fold model makes it

possible to estimate realistic, directly measurable vocal fold

properties, which is important to clinical applications. Our

previous study showed reasonable agreement between esti-

mations from this neural network and excised human larynx

experiments (Zhang, 2020).

The goal of this study is to further validate this

simulation-based neural network for voice production inver-

sion in live humans, an important step toward clinical and

speech technology applications. Due to difficulties in reliably

measuring the physiological control parameters in live

humans, validation of such voice inversion systems in

humans is challenging and is often limited to the subglottal

pressure. In this study, we attempt to validate our neural net-

work against data collected from a single human subject pro-

ducing repetitions of /pa/ at different loudness levels. During

the experiment, the output sound, glottal flow rate at the lips,

and intraoral pressure behind the lips were recorded. This

protocol was chosen for two reasons: First, the intraoral pres-

sure measured during the /p/ segment is often used as an indi-

rect measure of the subglottal pressure and its trend of

variation during the following vowel production. This allows

us to quantitatively evaluate the accuracy of the neutral net-

work in estimating the subglottal pressure. Second, the pro-

duction of consecutive /pa/s requires alternating adduction

(from /p/ to /a/) and abduction (from /a/ to /p/) of the vocal

folds. In particular, louder /pa/ production is expected to have

a higher subglottal pressure and thus requires a larger maxi-

mum abduction angle of the vocal folds in order to suppress

vocal fold vibration during the /p/ segment, and tighter

adduction during the vowel in order to maintain sufficient

glottal closure. Thus, compared to soft speech, loud speech

production would exhibit large modulation in the initial glot-

tal angle (a measure of prephonatory vocal fold adduction),

which will allow us to qualitatively validate our neural net-

work in predicting changes in the initial glottal angle.

The focus on the subglottal pressure and the initial glot-

tal angle in our validation is clinically motivated. High sub-

glottal pressure and tight vocal fold adduction are two

important factors contributing to high vocal fold contact

pressure and risk of vocal fold injury. Although phonotrau-

matic vocal hyperfunction is among the most frequently

occurring voice disorders, patients often seek medical assis-

tance only after such hyperfunctional behavior has led to

vocal difficulties or noticeable voice changes. The neural

network developed in this study would have the potentiala)Electronic mail: zyzhang@ucla.edu, ORCID: 0000-0002-2379-6086.
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for the speaker to monitor the voice and facilitate early diag-

nosis and intervention.

II. NEUTRAL NETWORK AND TRAINING

Details of the neutral network and training can be found

in our previous work (Zhang, 2020, 2021). In this study, the

inputs to the neural network are voice features extracted from

the output acoustics and glottal flow waveform. These

include the fundamental frequency (F0), sound pressure level

(SPL), cepstral peak prominence (CPP), harmonic-to-noise

ratio (HNR), subharmonic-to-harmonic ratio (SHR), the dif-

ferences between the first harmonic and the second harmonic

(H1-H2), the fourth harmonic (H1-H4), the harmonic nearest

2 kHz (H1-H2k), and the harmonic nearest 5 kHz (H1-H5k)

in the spectrum of the time derivative of the glottal flow

waveform, mean (Qmean) and peak-to-peak amplitude

(Qamp) of the glottal flow waveform, closed quotient (CQ)

of the glottal flow waveform, maximum flow declination rate

(MFDR), and maximum flow acceleration rate (MFAR). We

intentionally did not include any features characterizing vocal

fold vibration so that application of the trained network does

not require specialized equipment that may not be readily

available outside the clinic.

The output of the neural network is the estimated con-

trol parameters of a three-dimensional, body-cover, contin-

uum model of voice production (Zhang, 2020), including

the subglottal pressure Ps, initial glottal angle a quantifying

the degree of vocal fold adduction, vocal fold geometry

(length, depth, and vertical thickness), and vocal fold stiff-

ness. In this study, we focused on the subglottal pressure

and the initial glottal angle, two important parameters deter-

mining the risk of vocal fold injury.

Data used for neural network training were from numer-

ical simulations using the three-dimensional body-cover

voice production model, with parametric variations in nine

geometric and stiffness control parameters, as described in

detail in Zhang (2020). A total of 221 400 vocal fold condi-

tions were simulated, and 116 902 conditions resulted in sus-

tained phonation and thus were used in neural network

training. The 116 902 conditions were first z-score normal-

ized and then randomly divided into three sets, each for

training (70%), validation (15%), and testing (15%), respec-

tively. The neural network was trained to minimize the

mean squared error with regularization between the truth

and network prediction, using the scaled conjugate gradient

method in the MATLAB Deep Learning Toolbox. Training

stops when the mean squared error in the validation set has

increased more than a specified number of iterations since

the last iteration it decreased. The training process generally

takes about 15 000 iterations, depending on the number of

input/output and network configuration.

III. HUMAN DATA COLLECTION AND ANALYSIS

For validation of the neural network, acoustic and aerody-

namic data were collected in a single male human subject pro-

ducing utterances of five repetitions of the syllable /pa/ at

different loudness levels. The produced speech sound was

measured using a 1/2-inch microphone. The oral volume flow

rate was measured using a pneumotachograph attached to a cir-

cumferentially vented facemask (Glottal Enterprises, Syracuse,

NY) attached to the speaker’s face. The intraoral air pressure

behind the lips was measured using a pressure transducer con-

nected to a catheter, which passed through a fitting in the face-

mask and was held between the lips into the oral cavity. The

speaker was instructed to think of the string of repetition of

/pa/ as a five-syllable word spoken slowly, in order to obtain

steady-state intraoral pressure during the plosives and oral vol-

ume velocity during the vowels. The speaker produced the

utterance at varying loudness levels, ranging from soft, com-

fortable, to loud, without prescribed pitch/loudness levels.

The peak intraoral pressure during the plosives was iden-

tified for each /p/ segment. Linear interpolation between the

peak intraoral pressures of two consecutive /p/s was used to

approximate the subglottal pressure during the vowel /a/ in

between the two /p/s. From the recorded sound pressure data,

the F0, CPP, HNR, SHR, H1-H2, H1-H4, H1-H2k, H1-H5k,

and SPL were extracted using the software VOICESAUCE

(Shue et al., 2011). Note that the measures of H1-H2, H1-H4,

H1-H2k, and H1-H5k were corrected for the effect of for-

mant frequencies, as described by Iseli et al. (2007). Because

the neural network was trained using simulation data pro-

duced without a vocal tract, the measured SPL was subtracted

by 15 dB to correct for the effect of vocal tract resonance.

This 15-dB correction was determined using simulation data

generated with an /A/ vocal tract and without a vocal tract.

The SPL data from these simulations showed on average a

15-dB difference at medium and high subglottal pressures,

and this SPL difference decreased to about 5–10 dB at very

low subglottal pressures. Since the subglottal pressure was

unknown a priori, a constant 15-dB SPL correction was

applied to all conditions. The oral volume flow rate was

inverse filtered to obtain the glottal flow waveform using the

INVF software developed at UCLA (Kreiman et al., 2016),

from which the glottal flow-related measures (Qmean, Qamp,

CQ, MFDR, and MADR) were extracted.

IV. RESULTS

Figure 1 compares the neural network–predicted sub-

glottal pressure and the approximations from the intraoral

air pressure measurement. The estimated subglottal pressure

in general followed the experimentally measured values.

Linear regression showed a slope of 1.47, indicating that the

neural network tended to overestimate the subglottal pres-

sure at high pressures and underestimate at low pressures,

and an R2 (coefficient of determination) value of 0.83. The

mean absolute error was 290 Pa, which is higher than the

error (115 Pa) in our previous study using an excised human

larynx experiment (Zhang, 2020). The mean absolute per-

centage error was 24.5%, which is comparable to other stud-

ies (Gomez et al., 2019; Ibarra et al., 2021).

The top panel of Fig. 2 shows the oral volume flow and

intraoral air pressure data collected during a loud production

condition. For each repetition of the syllable /pa/, the oral
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flow was zero during the plosive, increased rapidly as the

oral closure was released, and then decreased slightly as

phonation was initiated. The peak oral flow increased again

as the peak-to-peak flow amplitude started to increase,

before eventually decreasing again toward the transition to

the next plosive. Note that the oral flow had a negative mini-

mum value during all five vowel productions, indicating that

the vocal folds were sufficiently adducted during the vowels.

The peak intraoral air pressure increased from the first /p/ to

the second /p/ and then slowly decreased toward the end of

the utterance. The peak intraoral air pressure in general was

high, ranging between 1.3 and 1.8 kPa.

The bottom panel of Fig. 2 shows the subglottal pres-

sure (diamonds) and initial glottal angle (squares; a measure

of vocal fold adduction) estimated from the neural network.

The estimated subglottal pressure was generally higher than

the linear interpolation (dashed line) from the measured

intraoral pressure, although it did follow the general trend. It

first increased from the first vowel to the second vowel

before it gradually decreased toward the end of the utter-

ance. For each vowel, the initial glottal angle had a very

large value (around 9�) during the early part of the /p/-/a/

transition (as indicated by the rapid decline of the intraoral

pressure and rise of the oral flow), decreased rapidly to a

much smaller value (as small as 0.6� in the first vowel), and

slowly increased again toward the transition to the next plo-

sive. The minimum initial glottal angle within each vowel

production was the smallest in the first vowel and slowly

increased toward the end of the utterance.

The general trends of the estimated initial glottal angle

shown in Fig. 2 is consistent with observations in previous

studies of plosive-vowel transitions. For high subglottal

pressures as in the case of Fig. 2, the maximum vocal fold

abduction angle is expected to be large in order to suppress

vocal fold vibration during the plosives. On the other hand,

loud vowel production is often accompanied by increased

vocal fold adduction. Thus, the transition from /p/ to /a/ dur-

ing loud speech is expected to involve a large change in the

initial glottal angle. In Fig. 2, vocal fold vibration started

early in the transition period as the vocal folds were still

being adducted, probably due to the high subglottal pressure

and likely high speed of adduction. This allowed us to cap-

ture the late part of the vocal fold adduction process during

the transition from /p/ to /a/. The maximum vocal fold

abduction angle during the plosives was expected to be even

larger than 9� as estimated in the transition period in Fig. 2.

Figure 3 shows similar data and estimations for a soft

loudness condition. In this case, the oral flow never

decreased to zero, indicating that the glottis was likely never

fully closed during the vowel production. The intraoral pres-

sure increased first during the first /pa/ and then decreased

toward the end of the utterance, similar to the loud produc-

tion condition in Fig. 2. During vowel production, oscilla-

tions in the oral flow waveform started relatively late in the

transition compared to that in the loud production condition

in Fig. 2. The peak-to-peak flow amplitude was also smaller,

and the maximum oral flow occurred at the beginning of the

transition period instead in the middle of the vowel as in the

loud production condition in Fig. 2.

The bottom panel of Fig. 3 shows the subglottal pressure

and initial glottal angle estimated from the neural network. The

estimate subglottal pressure was lower than the intraoral pres-

sure but showed a similar trend of variation. The estimated sub-

glottal pressure was much lower than that in the loud speech

condition in Fig. 2. The initial glottal angle hovered around

FIG. 1. (Color online) Comparison between experimentally estimated sub-

glottal pressure and estimates from the neural network. The solid line is a

line through the origin with a slope of 1. The equation shows linear regres-

sion and the corresponding R2 value.

FIG. 2. (Color online) Loud /pa/ pro-

duction. Top: measured oral volume

flow rate Qt (ml/s) and intraoral air

pressure (Po) during the production of

five repetitions of the syllable /pa/.

Bottom: the measured intraoral air

pressure (solid lines) and neural net-

work–estimated subglottal pressure Ps

(diamonds) and initial glottal angle

(squares). The dashed line is linear

interpolation of the peak intraoral pres-

sures between two consecutive /p/s, an

approximation of the subglottal pres-

sure during the vowel production.
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8� and was much larger than that in the loud production condi-

tion, indicating a low degree of vocal fold adduction. These dif-

ferences are expected in soft versus loud productions.

In contrast to the loud speech condition, which showed

a large modulation in the initial glottal angle during each

repetition of /pa/, in the soft speech condition the estimated

initial glottal angle remained relatively constant. However, a

similar modulation trend (an initial adduction followed by

abduction) can still be observed during the second and third

vowels, although the degree of modulation was small. This

small variation in the initial glottal angle likely resulted

from a weak vocal fold adduction during the vowels and a

reduced maximum vocal fold abduction angle during the

plosives (with reduced subglottal pressure, large abduction

was no longer required to suppress vibration during the /p/).

Due to the delayed voice onset in the soft speech condition,

no voice data were available during the early part of the

/p/-/a/ transition when the initial glottal angle rapidly

decreased, which may have further reduced the range of

modulation in the estimated initial glottal angle in Fig. 3.

V. DISCUSSION AND CONCLUSION

Our results showed reasonable accuracy of the neural net-

work in estimating the subglottal pressure. The neural network

was also able to qualitatively differentiate soft and loud speech

conditions in terms of the subglottal pressure and the degree of

vocal fold adduction. While further improvement in accuracy is

desired, this qualitative evaluation would allow us to qualita-

tively identify vocal behaviors that are of high risk of vocal fold

injury, such as the use of high subglottal pressure or vocal fold

hyperadduction. This has potential clinical applications in facil-

itating diagnosis of vocal hyperfunction as well as monitoring

progress of voice therapy or other interventions. This approach

does not require specialized equipment and thus allows speak-

ers to monitor their own voice production without a visit to the

clinic.

Due to difficulties in reliably measuring vocal fold

properties in humans, the neural network was trained using

data generated from computational simulations of voice pro-

duction. An important goal of this study was to evaluate

whether such simulation-based neural networks can be

applied to human speech and still produce reasonable accu-

racy. The reasonable agreement in this study is encouraging

considering that the model geometry (Zhang, 2020),

although three-dimensional in nature, is still quite different

from the realistic geometry in humans (Wu and Zhang,

2019). More importantly, the neural network was trained

using simulation data generated without a vocal tract, and

inverse filtering was used to recover the source information

from human data. In other words, the estimation process

implicitly assumes no source–tract interaction, whereas

source– tract interaction is known to exist in human phona-

tion. Despite these simplifications, the reasonable agreement

in this study suggests that the computational model and the

simulation data it generated do capture the major cause–effect

relationships between vocal fold physiology and voice pro-

duction in humans, and the simulation-based machine learn-

ing approach has the potential to be applied to human speech

production for clinical and speech technology applications.
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FIG. 3. (Color online) Soft /pa/ pro-

duction. Top: measured oral volume

flow rate Qt (ml/s) and intraoral air

pressure (Po) during the production of

five repetitions of the syllable /pa/.

Bottom: the measured intraoral air

pressure (solid lines) and neural

network-estimated subglottal pressure

Ps (diamonds) and initial glottal angle

(squares). The dashed line is linear

interpolation of the peak intraoral pres-

sures between two consecutive /p/s, an

approximation of the subglottal pres-

sure during the vowel production.
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