### Muscular control of vocal fold adduction and eigenfrequencies:

#### Interaction between the TA and LCA muscles

Jun Yin and Zhaoyan Zhang

School of Medicine, UCLA, USA

April 10, 2014 ICVPB 2014 Conference, Salt Lake City

Acknowledgment: Research supported by NIH/NIDCD

- What we want to know: how different vocal fold adduction patterns affect the stiffness/stress conditions in the vocal folds
- Why:
  - stiffness conditions of the different layers of the vocal folds critically determine the resulting vibration and acoustics
  - How humans produce different voice types

# Difficulties with experimental approach

- Able to stimulate laryngeal muscles
  - Need human subjects or in vivo larynx model
- No reliable methods for in vivo measurement of the following during muscle stimulation:
  - Three-dimensional vocal fold geometry, including the inner layers
    - Endoscopic observation limited to a superior view
  - Stiffness within the vocal folds, nonlinear and anisotropic
- Alternative approach: Numerical modeling of muscular control of posturing

### This study

- Focus on the LCA/TA interaction
- Control of:
  - Glottal gap
  - Vocal fold deformation
  - Vocal fold eigenfrequencies
    - Indications of changes in stiffness/stress in the vocal folds



#### **Model details**

- PCA and IA muscles were not activated in this study, but their passive response to arytenoid motion was modeled.
- The interface between the cricoid and arytenoid cartilages was modeled as a contact-sliding interface, which allowed relative sliding motion between the two cartilages in the tangential direction along the interface.
- A virtual film layer was added in between the cricoid and the arytenoid cartilages to prevent separation of the two cartilages

#### **Constitutive model: passive component**

- > Passive material: vocal fold cover layer and all muscles
  - Isotropic
  - Hyperelastic
  - Nearly incompressible
- Hyperelastic strain energy function



### **Constitutive model: active component**

> Active material: laryngeal muscles (TA and LCA)



Ref: Hunter et al., 2004; Yin and Zhang, 2013

# **Vocal fold posturing: LCA activation**

Superior view

Side view





- Rotation of the arytenoid about the cricoid mainly in the coronal plane
- Posterior vocal fold to move medially and downward
- Adduction of the posterior glottis

# LCA activation closes the posterior glottis, but not the middle part



# **Vocal fold posturing: TA activation**

Superior view

Side view



- Shortening the vocal fold
- Rigid-body-like rotation about the anterior attachment to the thyroid cartilage

Anterior adduction

Slightly medial bulging

# TA activation adducts the anterior vocal fold, but not the posterior part



### Due to difficulties in experiments, comparison to experiments is limited to a qualitative validation



shape

LCA contraction



ΤΔ contraction

• Qualitative agreement with in vivo canine experiments in Choi et al. (1993) and Chhetri et al. (2012).





# LCA/TA interaction: control of glottal gap

- Anteriorly, both TA and LCA activation reduce glottal gap
- Posteriorly, TA activation first increases then decreases glottal gap



#### Middle cross section

#### Anterior cross section



# TA activation significantly weakens the adduction effect of LCA activation



Presumably IA activation is required to close the posterior gap, in the presence of strong TA activation.

Position along x direction from anterior end (mm)

# **Control of 1<sup>st</sup> vocal fold eigenfrequency**



#### First ten eigenfrequencies



What this means ...

- LCA activation: a simple geometric adduction
  - Adduction of the posterior portion of the glottis
  - Does not change stiffness/stress much
- TA activation: both adduction (anterior) and stiffening
  - Adduction of the anterior portion of the glottis
  - TA activation stiffens vocal folds and thus reduces the adduction effect of LCA activation
- TA may act as a finer controller of phonation
  - Vibration: Open quotient
  - Voce quality (e.g., normal, breathy, or pressed)