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Previous studies show that phonation onset occurs as two eigenmodes of the vocal folds are
synchronized by the interaction between the vocal folds and the glottal flow. This study examines
the influence of the geometrical and biomechanical properties of the vocal folds on this
eigenmode-synchronization process, with a focus on phonation threshold pressure and frequency.
The analysis showed that phonation threshold pressure was determined by the frequency spacing
and coupling strength between the two natural modes that were synchronized by the fluid-structure
interaction. The phonation frequency at onset was the root mean square value of the two natural
frequencies plus a correction due to the added stiffness of the glottal flow. When higher-order modes
of the vocal fold structure were included, more than one group of eigenmodes was synchronized as
the system moved toward phonation onset. Changes in vocal fold biomechanics may change the
relative dominance between different groups and cause phonation onset to occur at a different
eigenmode, which was often accompanied by an abrupt change in onset frequency. Due to the
synchronization of multiple pairs of eigenmodes and the mode-switching possibility, a complete and
accurate description of vocal fold biomechanical properties is needed to determine the final
synchronization pattern and obtain a reliable calculation of the dependence of phonation threshold

pressure and frequency on vocal fold geometry and other biomechanical properties.
© 2010 Acoustical Society of America. [DOI: 10.1121/1.3308410]

PACS number(s): 43.70.Bk, 43.70.Gr [AL]
I. INTRODUCTION

Phonation threshold pressure is defined as the minimum
lung pressure that initiates self-sustained vibration of the vo-
cal fold (Titze, 1988, 1992). Due to its theoretical and poten-
tially practical importance (Titze er al., 1995), phonation
threshold pressure and its dependence on vocal fold proper-
ties have been investigated in many previous studies (Ish-
izaka, 1981, 1988; Titze, 1988, 1992; Titze et al., 1995; Chan
et al., 1997; Lucero and Koenig, 2005, 2007). Using a linear
stability analysis, Ishizaka (1981, 1988) derived conditions
of phonation onset in the two-mass model. By numerically
solving for the eigenmodes of the coupled airflow-vocal fold
system, he showed that two natural modes of the vocal folds
degenerated into a single mode as a consequence of aerody-
namic coupling at a threshold flow rate, beyond which oscil-
lation can be self-sustained. This eigenmode synchronization
led to a phase difference in the motion of the upper and
lower masses. Recognizing the importance of this phase dif-
ference in sustaining vocal fold vibration, Titze (1988) pro-
posed a mucosal wave model, in which he related the pho-
nation threshold pressure to the so-called mucosal wave
velocity:

Py = (2k/T)Bc&y*1(&y + &), (1)

where k, is a transglottal pressure coefficient, B is the mean
damping coefficient, ¢ is the mucosal wave velocity, &), and
&o are the prephonatory glottal half-widths at the upper and
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low margins of the medial surface, and 7 is the medial sur-
face thickness. Equation (1) reveals the relation between the
presence of the mucosal wave (or phase difference, as repre-
sented by the mucosal wave velocity ¢) and the energy trans-
fer between the vocal folds and glottal flow (as represented
by the phonation threshold pressure). As the mucosal wave
can be directly observed in humans, this equation lays a the-
oretical foundation for many diagnostic measures of voice
based on quantifying the mucosal wave motion using either
stroboscopic or high-speed recordings of human vocal fold
vibration. However, like the phonation threshold pressure,
the mucosal wave velocity itself is a dynamic variable of the
coupled airflow-vocal fold system and cannot be determined
a priori. Therefore, a direct link between vocal fold biome-
chanics and phonation threshold pressure is still missing.
Clinically, such a link would allow us to better predict the
consequence of surgical manipulation of the vocal folds
properties (e.g., geometry and stiffness of the multilayers of
the vocal folds) and therefore help surgeons to better plan
and evaluate possible treatment options.

Recently, Zhang et al. (2007) extended the linear stabil-
ity analysis to a continuum model of the vocal folds, and the
same eigenmode-synchronization phenomenon as in Ish-
izaka, 1981 was observed (Fig. 1). Further studies using the
same model (Zhang, 2008, 2009) showed that details of the
eigenmode-synchronization process determined the charac-
teristics of phonation onset (threshold pressure, frequency,
and vocal fold vibration pattern). A slight change in the
eigenmode-synchronization pattern, as induced by changes
in properties of the vocal system, may lead to qualitatively
different vocal fold vibration and abrupt changes in phona-
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FIG. 1. (Color online) A typical eigenmode-synchronization pattern. Phona-
tion onset occurs as two modes of the vocal folds are synchronized by the
glottal flow. The figure shows the frequency (top) and growth rate (bottom)
of the first three eigenmodes of the vocal folds as a function of the subglottal
pressure. As the subglottal pressure increases, the frequencies of the second
and third modes gradually approach each other and, at a threshold subglottal
pressure, synchronize to the same frequency. At the same time, the growth
rate of the second mode becomes positive, indicating the coupled airflow-
vocal fold system becomes linearly unstable and phonation onset.

tion onset frequency. Therefore, it seems that a better insight
into the physics of phonation onset can be obtained by ex-
amining how vocal fold biomechanics affect the eigenmode-
synchronization process, from which the influence of vocal
fold biomechanics on phonation onset characteristics can be
identified.

This study aims to identify the geometrical and biome-
chanical factors that affect phonation threshold pressure and
frequency. This is achieved by first studying phonation
threshold pressure and frequency in an idealized case of zero
damping (both structural and flow-induced) and assuming a
two-mode representation of the vocal fold motion (Sec. II).
Such simplifications allow the phonation threshold pressure
and frequency to be analytically investigated, in which way
the factors underlying the eigenmode-synchronization pro-
cess can be revealed. In the second part of the paper (Sec.
II1), numerical simulations were used to further illustrate the
physical concept developed in Sec. II (Sec. III A). The sim-
plifications made in Sec. II were then relaxed and influence
of higher-order modes (Sec. III B), glottal opening (Sec.
III C), and damping (Sec. Il D) was examined. In contrast to
the lumped-mass model used in Ishizaka, 1988, a continuum
model of the vocal folds (Zhang et al., 2007; Zhang, 2009)
was used in this study so that the phonation threshold pres-
sure and frequency were related to directly measurable pa-
rameters of the vocal system, such as vocal fold geometry
and stiffness.

Il. THEORY
A. Continuum vocal fold model

Figure 2 shows the continuum vocal fold model used in
this study. A body-cover idealization as suggested by Hirano
(1974) was used. The geometric control parameters of the
model include the vocal fold thickness at the lateral base
Tyase- the medial surface thickness T, the depths of the body
and cover layers D, and D, respectively, the divergence
angle of the medial surface from the glottal centerline «, the
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FIG. 2. The two-dimensional vocal fold model and the glottal channel. The
coupled airflow-vocal fold system was assumed to be symmetric about the
glottal channel centerline, and only the left half of the system was consid-
ered in this study. 7 and T}, are the thicknesses of the vocal fold in the flow
direction at the medial surface and the lateral base, respectively; D, and D,.
are the depths of the vocal fold body and cover layers at the center of the
medial surface, respectively; g, is the minimum glottal half-width of the
glottal channel at rest. The divergence angle « is the angle formed by the
medial surface of the vocal fold with the z-axis. Other control parameters
include the thickness of the cover layer at the base of the vocal fold, #, the
rounding fillet (for smoothing of the otherwise sharp corners) radius, r, and
the glottal exit angles of the body and cover layers. The dash line indicates
the glottal channel centerline.

angles of the glottal exit of the body and cover layers, and
the minimum glottal half-width at rest g,. Left-right symme-
try in system dynamics about the glottal centerline was as-
sumed so that only half of the system was considered in this
study. The vocal folds were modeled as a two-dimensional,
plane-strain elastic body. Each layer has distinct density and
Young’s modulus. No vocal tract was included in this study.
A constant flow rate Q was imposed at the glottal entrance. A
potential-flow description was used for the glottal flow up to
the point of flow separation, beyond which the pressure was
set to the atmospheric pressure. The flow was assumed to
separate from the glottal wall at a point downstream of the
minimum glottal constriction whose width was 1.2 times the
minimum glottal width.

B. Linear stability analysis

Phonation onset can be studied by examining how the
eigenmodes and eigenvalues of the coupled airflow-vocal
fold system vary as the glottal flow rate Q is increased from
zero. Phonation onset occurs when the growth rate (real part
of the eigenvalue) of one of the eigenvalues first becomes
positive, indicating that the coupled system becomes linearly
unstable. A brief description of the analysis procedure is
given below. For details of the derivation of the system equa-
tions and the procedure of the linear stability analysis, read-
ers are referred to the original papers of Zhang er al. (2007)
and Zhang (2009). The analysis consists of two steps. In the
first step, a steady-state problem was solved for the static
deformation of the vocal fold structure for a given glottal
flow rate Q (Zhang, 2009). In the second step, a linear sta-
bility analysis (Zhang et al., 2007) was performed on the
deformed state of the airflow-vocal fold system. The govern-
ing equations of the eigenvalue problem were derived from

Zhaoyan Zhang: Biomechanics of Phonation threshold pressure 2555

Author's complimentary copy



Lagrange’s equations as

(M =0,)G+(C-0)g+(K-0¢)q=0, (2)

where ¢ is the generalized coordinate vector, M, C, K are the
mass, damping, and stiffness matrices of the vocal fold struc-
ture, and the three matrices Q,, Q,, O, are the flow-induced
stiffness (proportional to vocal fold displacement), flow-
induced damping (proportional to vocal fold velocity), and
flow-induced mass (proportional to vocal fold acceleration)
matrices, respectively. All three matrices (Qy,Q;,0Q,) are
functions of the jet velocity U;, which was calculated in the
steady-state problem using the imposed subglottal flow rate
and the resting vocal fold geometry. Equation (2) was solved
as an eigenvalue problem by assuming a solution form of
g=qoe*, where s is the eigenvalue and ¢, is the correspond-
ing eigenmode. The two-step procedure was repeated until
the flow rate was increased to a point that phonation onset
was detected. The phonation threshold pressure would then
be the subglottal pressure at onset, and the phonation onset
frequency would then be given by the imaginary part of the
corresponding eigenvalue.

Zhang et al. (2007) showed that the flow-induced stiff-
ness term @, played a dominant role in the eigenmode-
synchronization process. When the other two flow-induced
terms (Q; and Q,) and structural damping are excluded, Eq.
(2) becomes

MG+ (K- Q0)q=0. 3)

The flow-induced stiffness matrix Q, is (Zhang et al., 2007)

3

H,’ . H, .
flfw ’5 (Pj X QDj,x Pixy + F‘P],x - QDj,x @i,znz) dl
0

3(ij (Pj,x*) @i,xnx

5 G

H
+ <H03 ()Djx ()Dj,x ) QDi,znz :|dl, (4)

where [¢;,, ;] is the ith normal mode of the vocal fold
structure, py is the density of air, U; is the mean jet velocity
at the point of flow separation, H, is the glottal channel
width as a function of the coordinate z, which is along the
flow direction, H, is the glottal channel width at the point of
flow separation (H;=~2X g, X 1.2 in this study), and ,; de-
notes the portion of the vocal fold surface from the glottal
inlet to the point of flow separation. The asterisk denotes that
the function is evaluated at the point of flow separation.

C. Two-mode approximation

Equation (3) was further simplified by assuming a two-
mode approximation of the vocal fold motion, i.e., the vocal
fold displacement [£, 77] (displacement in the medial-lateral
and inferior-superior directions, respectively) was approxi-
mated as the linear combination of the first two normal

modes of the vocal fold structure:
E=qi1Q1+ P2 N=1P1 T G200 ;- (5)

Substitution of Egs. (5) into Eq. (3) yields
[1 0}{‘71}4_[“’0,124'7“11 Yan, ]{CH}:O
0 1114, Yas woo" + vay |Las ’
(6)

where wy; is the natural frequency of the ith natural mode of
the vocal fold structure, and

1 2
y=5pU;s a

2 H :

Note that 7y is related to the subglottal pressure by a geomet-
ric factor:

2
P.yzy(l_%>’ (8)

inlet

where Hj,. is the glottal width at the glottal inlet. For con-
venience, the variable y and the subglottal pressure P, are
used interchangeably in the rest of this paper. Assuming g

(7)

2 2
’ J pofl @i+ @ )dV
1%

=qye*, Eq. (6) was solved as an eigenvalue problem for the
eigenvalue s and the eigenmodes ¢g,. The characteristic equa-
tion of the eigenvalue problem is

st [(wo,]2 + yay) + (wo,zz + 'ya22)]s2 + [(wof +yay;)

X (w0’22 + vay,) — }/2a12a21] =0. (9)

The solution to Eq. (9) is

2= [(‘Uo,12 +yay) + (0’0,22 +yay)] *+ \/[(wo,12 +yay) -

(%,22 + yayn)* + 4v%a,ay

2
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Equation (10) shows that the effect of the flow-induced
stiffness Q, is twofold. The diagonal terms (a;; and d,,)
introduce additional stiffness to each corresponding eigen-
mode. [This can be seen by setting the off-diagonal terms
(a;, and a,;) to zero, in which case the two solutions become
w0,12+ ya,, and w0’22+ va,,.] The off-diagonal terms couple
the two relevant modes and therefore allow the frequencies
of the two modes to either approach (for negative value of
ayya,;) or diverge (for positive value of aj,a,;) from each
other (see further discussion below). For positive values of
a2y, Eq. (10) shows that the eigenvalue s is either purely
imaginary or real, indicating the system is either neutrally
stable or becomes linearly unstable at a zero frequency (or
static divergence, in which the amplitude of the disturbance
would grow monotonically with time, in contrast to an oscil-
latory increase in flutter instability). As we were concerned
with nonzero-frequency instability, a negative value of a,a,;
was assumed in the following derivation.

At onset, the real part of the eigenvalue s becomes zero
so that the eigenvalue is purely imaginary, which occurs at
the following condition:

[(wO,lz +yay) - (‘1’0,22 +yan) P +4yapa, =0.  (11)

Solving Eq. (11) yields the value of vy at onset (by requiring
v to be positive and, if both two solutions were positive,
choosing the smaller of the two solutions):

2 2 2 2
Woor — Woq _ Wy — W

Yin = > (12)

ay) - ap+2\-apay B
where S is defined as the coupling strength between the two
modes due to aerodynamic coupling. Note that a similar ex-
pression was also derived by Auregan and Depollier (1995)
in a linear stability analysis of the soft palate under the in-
fluence of inspiratory flow. Substituting Eq. (12) into Eq.
(10), the frequency at onset is

2 2
wy "+ 0o,y + Yylag +ay)
wth:\/ 0,1 0,2 5 1 (13)

or the phonation threshold pressure can be written as a func-
tion of phonation onset frequency:

Yin = ;(2‘%2 - “’0,12 - wo,zz)- (14)

ap t+axp

Equation (12) shows that the phonation threshold pres-
sure depends on two factors: the frequency spacing and the
coupling strength between the two natural modes that are
being synchronized. Refer to Fig. 1, small frequency spacing
indicates a small frequency difference that the two modes
have to overcome to merge with each other and therefore a
lower threshold pressure; and for the same frequency spac-
ing, a strong coupling indicates that less airflow is required
to synchronize the two modes.

The coupling strength, B3, as defined in Eq. (12), again
depends on two effects: the first is the relative frequency
change due to the diagonal terms of the Q, matrix (a;
—a,,) and the second is the relative frequency change due to
the coupling effect of the off-diagonal terms. When the two
off-diagonal terms are large and of opposite sign (positive

J. Acoust. Soc. Am., Vol. 127, No. 4, April 2010

coupling strength), the coupling effect would dominate and
the two modes would be synchronized to a same frequency.
When the off-diagonal terms are of the same sign (coupling
strength is complex) or when they are of opposite sign but
their product much smaller than the difference of the second
and first diagonal terms (negative coupling strength), the fre-
quencies of the two modes would diverge from each other
and mode synchronization is then not possible. Note that, for
a given glottal half-width and a known flow separation point,
the coupling strength, 3, depends solely on the properties of
the vocal fold structure, and therefore can be readily calcu-
lated for any given geometry and material properties of the
vocal folds.

When synchronization occurs, the frequency at onset is
the root mean square of the two natural frequencies with a
correction due to the diagonal terms of the flow-induced
stiffness matrix, as shown in Eq. (13). When the correction
term is small, the phonation frequency at onset would then
be a value in between the natural frequencies of the two
modes being synchronized.

D. Flutter versus static divergence

As briefly mentioned before, two types of instabilities
can occur in Eq. (6): one occurs at a zero frequency (static
divergence) and the other at a nonzero frequency (flutter).
For positive values of a,a,, or negative coupling strengths,
static divergence is the only possible instability. For negative
values of a,a,; and positive coupling strengths, which insta-
bility occurs first depends on properties of the given system.
Refer to Eq. (13), a zero threshold frequency w, is only
possible when the sum (a,;+a,,) is negative, in which case
the diagonal terms of the flow-induced stiffness QO lower the
frequency of the corresponding eigenmode. By requiring the
onset frequency [Eq. (13)] to be greater than zero, we have,
after substitution of Eq. (12),

2 2 2
Woo t+ Wy

- (ay +a22)'

2
Woo — Wy g

, (15)
ap —daxn +2\-aay
Equation (15) is the condition the system has to satisfy

to have a nonzero-frequency instability (or flutter). The

physical meaning of Eq. (15) is clear: the frequencies of the
two modes have to be brought together by the off-diagonal
terms before they reach zero by the stiffness-lowering effect
of the diagonal terms (see, e.g., Figs. 2(a) and 2(c) in Zhang,

2008). In other words, the threshold pressure for the system

to reach flutter onset has to be lower than the threshold as-

sociated with static divergence.

lll. SIMULATIONS

In this section, the influence of varying medial surface
thickness 7" was investigated as an example to further illus-
trate the concept of coupling strength, frequency spacing,
and eigenmode synchronization. The variation in the medial
surface thickness was achieved by adjusting the entrance
angles of the vocal folds accordingly, while keeping other
control parameters (the vocal fold thickness at the lateral
base, the depths of the body and cover layers, the exit angles
of the vocal folds, and the divergence angle) constant. The
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FIG. 3. (Color online) (a) Phonation threshold pressure P, and (b) phonation onset frequency F, as a function of the medial surface thickness 7. In (a) and
(b), the symbol O denotes results obtained when Eq. (6) was solved with two modes only and no damping; + denotes results obtained when Eq. (3) was solved
with the first ten modes included and no damping; [J denotes results obtained when Eq. (2) was solved with the first ten modes included and with a structural
loss factor 0=0.4. (c) Natural frequencies of the first five modes (in ascending order) of the vocal fold structure as a function of the medial surface thickness
T. (d) Coupling strength between the first and second modes (O), second and third modes ((J), third and fourth modes (< ), and fourth and fifth modes (+)
as a function of the medial surface thickness 7. A convergent geometry was used with a=—-5° and g,=0.02. Coupling strengths for other pairs of modes were

either negative or complex and are not shown.

phonation threshold pressure and frequency were numeri-
cally calculated following the procedure described in Sec.
IIB and in previous studies (Zhang et al., 2007; Zhang,
2009). Section III A focuses on the idealized case as dis-
cussed in Sec. II C. The effects of higher-order modes, glot-
tal opening, and damping are then discussed in Sec. III B,
Sec. I C, and Sec. III D, respectively.

For the simulations below, a nondimensional formula-
tion of system equations was used as in previous studies
(Zhang, 2009). The vocal fold thickness at the lateral base
Thaser the cover layer density p,, and the wave velocity of the

vocal fold cover layer VE,/p, were used as the reference
scales of length, density, and velocity, respectively. For the
results presented below, unless otherwise stated, the follow-
ing values of the model parameters were used:

D,=0.667, D.=0.167, go=0.02, a=—-5°,

E,=10, p,=1, p;=0.00117. (16)

For a vocal fold thickness of 9 mm at the lateral base, Eq.
(16) gives a vocal fold body depth of 6 mm, a cover depth of
1.5 mm, and a 0.18 mm minimum glottal half-width at rest.
For a cover stiffness of 5 kPa and a cover density of
1030 kg/m?, Eq. (16) gives a body stiffness of 50 kPa, and
a reference frequency scale of 244 Hz.

Note that in this study the reference length scale was the
vocal fold thickness at the lateral base, rather than the medial
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surface thickness as in previous studies (Zhang er al., 2007,
Zhang, 2008, 2009). Due to this different choice of reference
length scale, for the same frequency variables, the values in
this study were generally larger than in previous studies.

A. Two-mode approximation and no damping

Figures 3(a) and 3(b) (circle symbols) show the phona-
tion threshold pressure and frequency as a function of the
medial surface thickness 7. In this case, Eq. (6) was solved
numerically for a convergent glottis with a divergence angle
of —5°. Also shown in the figure are the natural frequencies
[Fig. 3(c)] and the coupling strength B [Fig. 3(d), circle sym-
bols] as a function of the medial surface thickness 7. Figure
3 shows that, in this case, the variation in the medial surface
thickness had little effect on the natural frequencies of the
first two modes. Consequently, the resulting phonation onset
frequency stayed nearly constant with increasing 7. How-
ever, the increase in the medial surface thickness did signifi-
cantly lower the coupling strength, leading to an increase in
phonation threshold pressure.

B. Effects of higher-order modes

The continuum vocal folds have an infinite number of
modes. Like the first two modes, other modes may also be
synchronized by the glottal flow. Therefore, when higher-
order modes are included, there is more than one pair of
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FIG. 4. (Color online) Frequency (top) and growth rate (bottom) of the first
four modes of the coupled system as a function of the subglottal pressure,
for vocal folds with a straight glottis (left column) and a convergent glottis
(right column). The vertical line indicates the point of onset. 7=0.3, g,
=0.01, 0=0.4, and other parameters are given by Eq. (16). Equation (2) was
solved with the first ten modes included. Interaction between the first three
modes helped to lower the phonation threshold pressure in the straight-
glottis case.

modes being synchronized. Phonation onset may occur at
higher-order modes if the synchronization of the higher-order
modes leads to a lower threshold pressure. Similarly, changes
in the model parameters may change the relative dominance
between different pairs of modes, causing phonation onset to
occur at a different mode. Such switching between modes is
often accompanied by a sudden change in phonation onset
frequency.

Figures 3(a) and 3(b) (symbols +) show the phonation
threshold pressure and frequency when the first ten modes
were included, other conditions remaining the same (i.e.,
zero damping). As the medial surface thickness increased, a
switch in phonation onset between modes occurred from
synchronization between the first and second modes to that
between the fourth and fifth modes. This mode switching
occurred because, for the fourth and fifth modes, the fre-
quency spacing decreased significantly as 7" increased, while
the coupling strength stayed higher than that between the
first and second modes. Note that, in this case after the
switching, the phonation threshold pressure did not vary
monotonically with the onset frequency, due to the opposite
trends of the frequency spacing and the coupling strength
with increasing medial surface thickness 7.

A less obvious effect of inclusion of higher-order modes
is demonstrated in Fig. 4. Figure 4 shows that mode synchro-
nization is affected by the presence of other modes. To illus-
trate this effect, a structural damping of 0=0.4 was used, and
Eq. (2) was solved with the first ten modes included. The two
cases in Fig. 4 had the same model parameter values except
the divergence angle was different: one was 0° (straight glot-
tis) and the other —5° (convergent glottis). For the straight-
glottis case, due to the influence of the third eigenmode, the
phonation threshold pressure was much lower than that in the
convergent-glottis case, even though phonation onset in both
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cases occurred due to the synchronization between the first
and second eigenmodes. Note that the frequencies of the first
and second eigenmodes approached each other but did not
merge. This was caused by the introduction of structural
damping which prevents the exact merging of the two eigen-
modes (Kuznetsov, 2004). However, the underlying mecha-
nism still remained to be the coupled-mode flutter between
the two modes (Zhang et al., 2007).

C. Effects of glottal opening

Equations (12) and (7) show that increasing glottal
opening reduces coupling strength, which generally raises
phonation threshold pressure. Figure 5 shows the phonation
threshold pressure and frequency as a function of the resting
glottal half-width for a convergent glottal geometry (a=
—5°, T=0.5). The glottal half-width was varied from 0.01 to
0.1, which corresponds to a range between 0.2 and 2 mm
glottal openings for a 10 mm vocal fold thickness at the
lateral base. The results (circle symbols) were obtained by
solving Eq. (3) with the first ten modes included. Figure 5(a)
shows that phonation threshold pressure increased with in-
creasing glottal half-width, due to the reduced coupling
strength. However, Fig. 5(d) shows that the degree of this
reduction effect was eigenmode dependent: it was the largest
for the coupling strength between the first and second eigen-
modes, and much smaller for the coupling strength between
the second and third eigenmodes. This is because that the
glottal half-width g, (through the variable H,) also appears in
the numerator of Eq. (7) as a weighting coefficient inside the
integral. Due to this differential reduction effect on coupling
strength, a mode switching was observed as the glottal open-
ing was increased. For small glottal half-widths (g,<<0.04),
phonation onset still occurred as the fourth and fifth eigen-
modes were synchronized, consistent with the results in Sec.
III B. For larger values of the glottal half-width, phonation
onset occurred due to the synchronization of the second and
third eigenmodes as the coupling strength between the fourth
and fifth eigenmodes was reduced at a much faster rate than
that between the second and third eigenmodes.

When damping was included (square symbols in Figs.
5(a) and 5(b)), phonation onset occurred at the second and
third eigenmodes even for the range of small glottal half-
widths for which phonation occurred at the fourth and fifth
eigenmodes when no damping was included, due to a penal-
izing effect of the specific structural damping model used in
this study (see further discussion in Sec. III D).

D. Effects of damping

In the simulations presented below, a proportional struc-
tural damping was assumed for the vocal fold material so
that the structural damping and mass matrices were related
by

C=o0wM, (17)
where o is the constant structural loss factor and w is the
angular frequency.

When structural damping is included, phonation onset is
generally delayed to a higher threshold pressure, as more
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FIG. 5. (Color online) (a) Phonation threshold pressure Py, and (b) phonation onset frequency F, as a function of the resting glottal half-width g,. In (a) and
(b), the symbol O denotes results obtained when Eq. (6) was solved with two modes only and no damping; [J denotes results obtained when Eq. (2) was
solved with the first ten modes included and with a structural loss factor o=0.4. (c) Natural frequencies of the first five modes (in ascending order) of the vocal
fold structure as a function of the resting glottal half-width g,. (d) Coupling strength between the first and second modes (O), second and third modes ([J),
and fourth and fifth modes (+) as a function of the glottal half-width g,. A convergent geometry was used with a=—-5° and 7=0.5. Coupling strengths for other

pairs of modes were either negative or complex and are not shown.

energy is needed to overcome the extra structural dissipation.
Figure 6 shows the phonation threshold pressure and fre-
quency as a function of the structural loss factor for a con-
vergent glottis (w=-5°, T=0.3). Equation (2) was solved
with the first ten modes included. The value of the loss factor

0.16
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01F =
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: : : 0.2 : : :
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FIG. 6. Phonation threshold pressure (left) and onset frequency (right) as a
function of the structural loss factor o, for a convergent vocal fold geometry
(@=-5°). T=0.3, and other parameters are given by Eq. (16). Equation (2)
was solved with the first ten modes included. The solid lines in Fig. 6(b)
denote the first five eigenfrequencies (in ascending order) of the damped
vocal fold structure.
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was varied from 0 to 2.0, which roughly covers the physi-
ological range as measured by Chan and Rodriguez (2008)
and Chan and Titze (1999). Due to increasing dissipation,
phonation threshold pressure increased with increasing struc-
tural loss factor [Fig. 6(a)].

Figure 6 also shows that, for small values (o
=0.1-0.3) of the structural loss factor, phonation onset oc-
curred due to the synchronization between the first and sec-
ond eigenmodes, instead of between the fourth and fifth as
discussed above in Sec. III B and Fig. 3. This is because that,
for the type of damping used in this study [a constant loss
factor as in Eq. (17)], dissipation increases linearly with fre-
quency so that higher-order modes need to overcome more
dissipation to reach onset. In other words, the structural
damping tends to delay the onset of higher-order modes
more than lower-order modes. As a result, the synchroniza-
tion between the first and second eigenmodes was able to
reach onset at a lower subglottal pressure than that between
the fourth and fifth modes, causing a sudden decrease in
phonation onset frequency with increasing structural loss
factor [Fig. 6(b)].

However, the inclusion of structural damping does not
completely rule out the possibility of phonation onset at
higher-order modes. Figure 6 shows that, as structural damp-
ing increased, phonation onset gradually changed to involve
the third and even the fourth eigenmodes for a loss factor as
large as 2.0. Indeed, for large values of structural loss factor,
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FIG. 7. (Color online) Frequency (top) and growth rate (bottom) of the first
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modes included. The vertical line indicates the point of onset. Phonation
onset at large values of the structural loss factor often involves the interac-
tion between more than two modes.

phonation onset often involved the interaction between more
than two eigenmodes, as shown in Fig. 7 for a condition of
T=0.3 and o=1.8. Note that, as different modes were in-
volved in phonation onset, vocal fold vibration patterns were
quite different between the case of 0=2.0 and the case of
o=0.1, although the phonation onset frequency was similar
for these two cases.

To compare with the prediction from the two idealized
cases discussed in Secs. III A and III B, Figs. 3(a) and 3(b)
(square symbols) also show the phonation threshold pressure
and frequency obtained for a loss factor 0=0.4. Compared to
the two idealized cases, phonation threshold pressure in this
case was consistently higher, due to the inclusion of struc-
tural damping. In the lower end of the range of medial sur-
face thickness, phonation onset occurred as the first and sec-
ond modes were synchronized. This is similar to the case
when only two modes and no damping were considered, but
for a much larger range of 7. For large values of 7, phona-
tion onset occurred as the second and third modes were syn-
chronized. This is different from either one of the two ideal-
ized cases, demonstrating the effects of both higher-order
modes (Sec. III B, more than one pair of modes being syn-
chronized) and damping (Sec. III D).

IV. DISCUSSION AND CONCLUSIONS

In Zhang et al. (2007), a scaling relation between the
phonation threshold pressure and the in vacuo eigenfrequen-
cies of the vocal fold structure was proposed by requiring a
balance or matching between the structural stiffness and the
flow-induced stiffness. In this study, Eq. (12) further clarifies
that it is the frequency spacing rather than the absolute
eigenfrequencies or stiffness of the vocal fold (although the
frequency spacing does generally increase with increasing
stiffness) that determines phonation onset. Indeed, as shown
in Sec. II D, a complete matching between the vocal fold
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stiffness and the flow-induced stiffness would lead to static
divergence, rather than flutter instability of the coupled
airflow-vocal fold system. Clinically, this suggests that one
of the goals of phonosurgery would be to reduce the fre-
quency spacing and enhance coupling between the first few
eigenmodes of the vocal fold structure, by either changing
the stiffness differential between different layers of the vocal
folds, modifying the vocal fold geometry, or a combination
of both. Although the final synchronization pattern and pho-
nation threshold depend on other biomechanical properties,
calculation of the frequency spacing and coupling strength
does provide a quick and direct evaluation of how such
changes in vocal fold biomechanics would affect mode syn-
chronization. Both the frequency spacing and the coupling
strength depend mainly on the natural modes of the vocal
fold structure, which can be easily calculated for given vocal
fold geometry and stiffness. Such calculations may be able to
provide a first-order evaluation of the possible treatment op-
tions in phonosurgery, when detailed information of the vo-
cal fold biomechanical properties is not available.

This study also shows that, as more than one pair of

modes is synchronized by the glottal flow, changes in vocal
fold biomechanical properties may change the relative domi-
nance between different pairs of modes and cause phonation
onset to occur at a different mode (Sec. III B and III C; also
see Zhang, 2008, 2009). Similar concept of mode-switching
has been used by Tokuda et al. (2007) to explain the abrupt
chest-falsetto register transitions in excised larynx experi-
ments. Due to the coupled-mode-flutter nature of phonation
onset, the presence of structural damping and large glottal
opening delays but does not seem to completely rule out the
possibility of phonation onset at higher-order modes and
therefore mode switching as observed in this study. Experi-
ments are currently under way to verify these predictions. On
the other hand, the excitation of higher-order modes and the
mode-switching possibility suggest that a complete and ac-
curate description of vocal fold biomechanical properties is
needed to determine the final synchronization pattern and
obtain an accurate prediction of phonation threshold pressure
and frequency. For phonation modeling, this also suggests
that higher-order modes need to be included, in particular,
for small glottal openings and large structural dampings for
which phonation onset often involves interaction among
more than two modes, as shown in Fig. 7.

Although this study considered geometric changes in the
vocal folds, changes in synchronization pattern can be
equally induced by stiffness changes (Zhang, 2009), or a
combination of both, all of which affect the frequency spac-
ing and coupling strength, and therefore phonation threshold.
This multivariable dependence of phonation threshold im-
plies that it may be unrealistic to expect a simple relationship
between phonation threshold pressure and onset frequency in

experiments in which biomechanics of the vocal folds and

their variations are either not controlled or unknown. This

includes, for example, measurement of phonation threshold

pressure and frequency in human subjects, in which it is
impossible to control or monitor “the subtle vocal fold pos-
turing or other performance variables in participating hu-
mans” (Solomon et al., 2007). This is particularly the case
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when mode switching as shown in this study is involved.
Indeed, in our simulations, phonation threshold pressure was
observed to be able to increase, decrease, or stay approxi-
mately constant with increasing phonation onset frequency,
depending on which biomechanical property was varied in
the simulations.

On the other hand, this multivariable dependence also
suggests that experimental results should be interpreted with
caution. For example, this study shows that an increase in
medial surface thickness 7 led to an increase in phonation
threshold pressure. Preliminary experiments in our labora-
tory using a rubber physical model (Zhang et al., 2006) and
implementing the exactly same geometric changes confirmed
this prediction. This seems to contradict with the prediction
of Eq. (1) and experimental observation by Chan er al.
(1997). This discrepancy is likely due to the multivariable
dependence of phonation threshold: phonation threshold
pressure may vary differently with the medial surface thick-
ness T if changes in T were achieved in different ways (e.g.,
using different geometric control parameters or different
body-cover layer configurations). In this study, variation in
the medial surface thickness 7 was achieved by varying the
glottal entrance angles of the body and cover layers, while
keeping other control parameters constant. The physical
model used in Chan er al. (1997) is quite different from the
geometries used in this study. Such differences in models
used may at least partially contribute to the discrepancy here.
Further experiments are needed to clarify this discrepancy.

The simulations of this study were obtained with some
assumptions made to simplify the underlying physics (Zhang
et al., 2007). These include neglecting viscous loss in the
airflow model, which is expected to play an important role
for small glottal openings. For normal phonation, the larynx
is often postured so that the two vocal folds are at least
partially in contact. Future work will include modeling these
effects and experimental validation of the results of this
study.
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